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The ultra-weak variational formulation (UWVF) approach has been proposed as
an effective method for solving Helmholtz problems with high wave numbers. How-
ever, for coarse meshes the method can suffer from instability. In this paper we
consider computational aspects of the ultra-weak variational formulation for the in-
homogeneous Helmholtz problem. We introduce a method to improve the UWVF
scheme and we compare iterative solvers for the resulting linear system. Computa-
tions for the acoustic transmission problem in 2D show that the new approach enables
Helmholtz problems to be solved on a relatively coarse mesh for a wide range of wave
numbers. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

The inhomogeneous Helmholtz equation arises in many physical problems. The model-
ing of time-harmonic acoustic and electromagnetic fields in heterogenous media are widely
known examples. For long wavelengths these problems can be approximated using low-
order finite element or finite difference methods. As the wavelength decreases these methods
become increasingly expensive due to the requirement that there must be sufficiently many
points per wavelength to obtain a reliable solution (ten grid points per wavelength is often
mentioned as a rule of thumb). In addition, numerical pollution due to the accumulation
of phase error forces the use of even more grid points per wavelength to maintain accu-
racy at a desired level [7]. In many applications this leads to intolerable computational
complexity.

To avoid the problems associated with lower order finite elements, a variety of techniques
have been proposed. Modifications of the basic finite element method include, for example,
higher order methods [8], least-squares finite elements [6, 11, 15], and partition of unity
methods (PUM) [1]. The PUM make it possible to include a priori information about the
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solution in the approximation subspace. Compared to standard finite elements this has been
shown to give considerable reduction in computational complexity [9].

A common feature of finite element methods with special shape functions, such as PUM,
is the need for numerical quadratures in the computation of the associated integrals. For
bases that consist of oscillatory functions this requires higher order quadratures [9] or
special integration techniques [12]. In addition, conditioning problems sometimes require
a regularization-type approach to stabilize the problem [12].

Another approach is to approximate the global solution of the Helmholtz equation by a
family of solutions of the Helmholtz equation in each element and enforce continuity as far
as possible across element boundaries via the numerical scheme. One obvious method is to
minimize the least-squares difference in the jumps of the solution and its normal derivative
across element edges by minimizing a least-squares functional; see, e.g., [10, 14]. In [10]
the method was analyzed using plane wave and Bessel function bases. Both bases provided
efficient means to obtain good accuracy. However, the plane wave basis was recommended
due to the simplicity of evaluating integrals. Conditioning problems were noted as the
number of basis functions per element increased.

The ultra-weak variational formulation (UWVF) is another approach to using discontin-
uous local solutions of the Helmholtz equation on each element. In this approach, which
was proposed and analyzed in [3–5], integration by parts is used to derive a variational
formulation that weakly enforces appropriate continuity conditions between elements via
impedance boundary conditions. As in the least-squares method a family of local solutions
of the Helmholtz equation is used to construct the approximation space. However, unlike
the least-squares method, the final equations satisfied by the discrete solution are given by
the Galerkin procedure rather than by the more ad hoc least-squares approach. However,
on the theoretical level the least-squares method is better understood than the UWVF in
that global convergence can be proved.

In principle there are many possible choices for the local approximation functions on
each element in the UWVF. However, only plane waves have been used so far, and based
on the theoretical studies in [10], it seems unlikely that Bessel function bases would offer
much improvement when approximating smooth solutions. Hence, as discussed further in
Section 3, we use plane waves in this paper.

An advantage of the use of the plane waves is that in most cases integrals occuring in the
resulting matrix system can be evaluated in closed form. As a drawback, ill-conditioning of
the problem has been reported when fine meshes or large dimensional bases are used [3].
However, it is shown in numerical examples that the method can produce accurate results
when the element size is twice the wavelength.

In this paper we investigate the UWVF from the computational point of view. We show
that the conditioning problem is particularly severe when the UWVF is applied to inhomo-
geneous problems or when unstructured meshes with varying element sizes are used. We
propose the use of a basis with a nonuniform number of basis functions per element as a
feasible method for improving the conditioning of the UWVF. Numerical examples show
that the proper choice of basis enables us to use very large geometric elements, sometimes
five times the size of the wavelength. In addition, we compare the Richardson and stabilized
Bi-Conjugate Gradient iterative methods for solving the resulting linear system.

The paper is organized as follows. In Section 2 we give a short review of the ultra-weak
variational formulation. In Section 3 we summarize the discrete form of the method. The
computational scheme for choosing the bases and solving the linear system is described
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in Section 4. In Section 5 we give numerical examples of the method applied to a high-
frequency acoustic transmission problem.

Now let us describe the problem considered in this paper. Let � be a domain in R
2 with

the smooth boundary � and outward unit normal ν. The inhomogeneous Helmholtz problem
for the field u is defined as

∇ ·
(

1

ρ
∇u

)
+ κ2

ρ
u = 0 in �, (1)

(
1

ρ

∂u

∂ν
− iσu

)
= Q

(
− 1

ρ

∂u

∂ν
− iσu

)
+ g on �, (2)

where κ = κ(x1, x2) ∈ C with Im(κ) ≥ 0, Re(κ) > 0 is the wave number, and |Q| ≤ 1, Q ∈ C.
The parameters ρ = ρ(x1, x2) and σ are real and positive. The source term on � is denoted
by g.

2. THE ULTRA-WEAK VARIATIONAL FORMULATION

OF THE HELMHOLTZ EQUATION

In this section we outline the UWVF for the inhomogeneous Helmholtz problem (1)–(2).
Let us partition the domain � into a collection of disjoint finite elements {�k}K

k=1. In this
report each element �k is a triangle except near curved interfaces or boundaries where �k

can be a curvilinear triangle. In principle it is possible to mix triangles and quadrilaterals
in the same mesh, but we have not studied this idea here. Let k j denote the edge between
element �k and element � j , and let νk denote the outward unit normal on ∂�k . The exterior
edges are denoted by �k ; see Fig. 1.

The coefficients ρ and κ are assumed to be piecewise constants, so that ρk ≡ ρ|�k and
κk ≡ κ|�k . Problem (1) and (2) can now be decomposed into subproblems for each element
�k, k = 1, . . . , K ,

�uk + κ2
k uk = 0 in �k (3)

uk = u j on k j (4)

FIG. 1. A part of the mesh. The interface between elements �k and � j is k j . The outward unit normal on
the boundary ∂�k is νk . Furthermore, if the element is on the exterior boundary, the corresponding part of ∂�k is
denoted by �k .



30 HUTTUNEN, MONK, AND KAIPIO

1

ρk

∂uk

∂νk
= − 1

ρ j

∂u j

∂ν j
on k j (5)

(
1

ρk

∂uk

∂νk
− iσkuk

)
= Q

(
− 1

ρk

∂uk

∂νk
− iσkuk

)
+ g on �k, (6)

where uk = u|�k . The transmission conditions (4) and (5) on the interface k j can be written
in the coupled form [2]

1

ρk

∂uk

∂νk
− iσuk = − 1

ρ j

∂u j

∂ν j
− iσu j , and

1

ρk

∂uk

∂νk
+ iσuk = − 1

ρ j

∂u j

∂ν j
+ iσu j , (7)

where σ is an appropriate real-valued parameter that is defined on the element boundary
∂�k . Since σ must have the same dimensions as κ/ρ [2] we have used

σ = 1

2

(
Re(κk)

ρk
+ Re(κ j )

ρ j

)
on k j , (8)

which is the mean value of Re(κ)/ρ on the interface k j . On the exterior boundary � the
choice of the parameter σ depends on the boundary condition.

Let us now define a new function

χk =
((

− 1

ρk

∂

∂νk
− iσ

)
uk

)∣∣∣∣
∂�k

, 1 ≤ k ≤ K . (9)

From (3), (6), and (7) and integration by parts it follows that χk satisfies [3–5]

K∑
k=1

∫
∂�k

1

σ
χk

(
− 1

ρk

∂

∂νk
− iσ

)
vk −

K∑
k=1

K∑
j=1

∫
k j

1

σ
χ j

(
1

ρk

∂

∂νk
− iσ

)
vk

+
K∑

k=1

∫
�k

Q

σ
χk

(
1

ρk

∂

∂νk
− iσ

)
vk

=
K∑

k=1

∫
�k

1

σ
g

(
1

ρk

∂

∂νk
− iσ

)
vk (10)

for all piecewise smooth test functions vk that are solutions of the adjoint Helmholtz equation

�v̄k + κ2
k v̄k = 0, in �k, (11)

where the bars stand for complex conjugate.
We now rewrite (10) to facilitate our discussion of the discrete problem. Let us define an

operator

Fk : L2(∂�k) → L2(∂�k) (12)

such that if yk ∈ L2(∂�k) then Fk(yk) ∈ L2(∂�k) is given by

Fk(yk) =
(

1

ρk

∂

∂νk
− iσ

)
vk on ∂�k, (13)
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where vk ∈ H 1(�k) satisfies (11) and

(
− 1

ρk

∂

∂νk
− iσ

)
vk = yk on ∂�k . (14)

Using Fk we see that (10) may be rewritten as the problem of finding χk ∈ L2(∂�k),
k = 1, 2, . . . , K such that

K∑
k=1

∫
∂�k

1

σ
χk ȳk −

K∑
k=1

k∑
j=1

∫
k j

1

σ
χ j Fk(yk) +

K∑
k=1

∫
�k

Q

σ
χk Fk(yk) =

K∑
k=1

∫
�k

1

σ
gFk(yk)

(15)

for all yk ∈ L2(∂�k), k = 1, 2, . . . K . Equation (15) is called the ultra-weak variational
formulation of the inhomogeneous Helmholtz problem (1) and (2). This formulation makes
clear that the unknown functions χk are computed on ∂�k using as test functions yk that
are also functions on ∂�k . Thus the UWVF generates a direct approximation to the field u
and ∂u/∂νk on the skeleton of the mesh ∂�k , k = 1, . . . , K . To compute u away from the
skeleton involves a local postprocessing step. In the discrete case this will be discussed in
the following section. Note that a knowledge of Fk , k = 1, . . . , K is required.

3. THE DISCRETE PROBLEM

Following [3, 4], we use a Galerkin approach to the discretization of the UWVF (15).
We need to discretize the spaces L2(∂�k), k = 1, . . . , K for functions appearing in (15). In
principle any choice of complete family in L2(∂�k) could work (for example, piecewise
constant finite elements on ∂�k). However, to implement (10) we must be able to compute
Fk(ya

k ) for discrete functions ya
k . This would be difficult using a piecewise constant basis.

With this in mind Cessenat and Despres [3, 4] suggest the following strategy for constructing
a discretization of L2(∂�k) that makes the computation of Fk trivial. For each �k a finite
family of functions ϕk,�, � = 1, . . . , pk is chosen which satisfy Eq. (11) so

�ϕ̄k,� + κ2
k ϕ̄k,� = 0 on �k (16)

and ϕk,� = 0 on �\�̄k . Then the discrete space approximating L2(∂�k) consists of all
functions ya

k such that

ya
k =

pk∑
�=1

yk,�

(
− 1

ρk

∂

∂νk
− iσ

)
ϕk,� k = 1, 2, . . . , K , (17)

where {yk,�}pk
�=1 are arbitrary constants. Similarly,

χa
k =

pk∑
�=1

χk,�

(
− 1

ρk

∂

∂νk
− iσ

)
ϕk,�, (18)

where the expansion coefficients {χk,�}pk
�=1 are the unknown functions we wish to compute.
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Of course Fk(ya
k ) is easy to compute since

Fk
(

ya
k

) =
pk∑

�=1

yk,�

(
1

ρk

∂

∂νk
− iσ

)
ϕk,�. (19)

The discrete UWVF is then obtained by replacing χk by χa
k , and yk by ya

k , in (15).
There are still a number of possible choices for the functions ϕk,�. Obviously we want

{ϕk,�}∞�=1 to be a complete family of solutions in the sense that any function in L2(�) can be
approximated to any desired accuracy by a function of the form (17) provided pk is chosen
large enough. For example, we could choose

ϕk,�(x) = J�−1(κ̄k |x − xk |)ei(�−1)θ , 1 ≤ � ≤ pk, (20)

where x ∈ R
2, xk ∈ �k , and J�−1 is the Bessel function of first kind and order � − 1. For

the least-squares problem this basis did not offer a significant advantage over the basis we
chose next [10]. In addition the integrals in (15) must be computed by quadrature.

Thus we turn to the choice advocated by Cessenat and Despres [3, 4] of the plane wave
basis given by

ϕk,� =
{

exp(i κ̄kdk,� · x) in �k

0 elsewhere,

where dk,� is a unit vector giving the direction of propagation of the wave. The wave plane
basis for the element �k can be constructed using angularly equispaced directions

dk,� =
(

cos

(
2π

� − 1

pk

)
, sin

(
2π

� − 1

pk

))
. (21)

The choice of equally spaced directions is not required by the UWVF. It is possible that
another choice of directions would reduce the number of required directions if some a priori
information about the solution is available, but this topic is not studied here. Instead, we
focus on allowing the number of directions pk to vary between elements.

In the Galerkin approach the test function vk,� is chosen from the basis functions so that
successively vk,� = ϕk,�, 1 ≤ � ≤ pk and 1 ≤ k ≤ K . Then the discrete form of the UWVF
can be written as the matrix equation [3]

(D − C)X = b, (22)

where X = (χ1,1, . . . , χ1p1 , χ2,1, . . .)
T . The entries in the Hermitian block diagonal matrix

D are

D�,m
k =

∫
∂�k

1

σ

(
− 1

ρk

∂ϕk,m

∂νk
− iσϕk,m

)(
− 1

ρk

∂ϕk,�

∂νk
− iσϕk,�

)
, (23)

where the subscript of D refers to the block and the superscript shows the element in
the block. The matrix C is also sparse and has a block structure. The entries in C are
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given by

C�,m
k, j =

∫
k j

1

σ

(
1

ρ j

∂ϕ j,m

∂νk
− iσϕ j,m

)(
1

ρk

∂ϕk,�

∂νk
− iσϕk,�

)

+
∫

�k

Q

σ

(
− 1

ρk

∂ϕk,m

∂νk
− iσϕk,m

)(
1

ρk

∂ϕk,�

∂νk
− iσϕk,�

)
. (24)

The entries for the right-hand side of the system are

bk,� =
∫

�k

1

σ
g

(
1

ρk

∂ϕk,�

∂νk
− iσϕk,�

)
. (25)

If the edges of the elements are straight the integrals above can be evaluated in closed
form. For details see [3, 4]. On curved element edges the integrals must be computed
numerically. We note that it is vital to use curved elements because large errors can occur
from approximating curved boundaries by multiwavelength-sized elements (this is another
way in which our implementation differs from the original implementation in [3]).

For numerical stability it is suggested [4] that Eq. (22) be solved in the form

(I − D−1C)X = D−1b. (26)

This preconditioned approach requires inversion of the matrix D. Due to the block diag-
onal strucure of D the inversion can be done element-wise for each Dk separately. Using
knowledge of the conditioning of the blocks we can improve stability of the resulting matrix
system (26). This is discussed in the next section.

Provided that κk is real in �k , the solution of the problem (1)–(2) can be approximated
by

ua|�k =
pk∑

�=1

χk,�ϕk,�. (27)

This is a direct consequence of Eqs. (3), (9), (11), and (18), together with the uniqueness
of the solution of the Helmholtz equation. On elements where κk is not real, a further local
problem must be solved element by element.

4. COMPUTATIONAL PROCEDURE

The solution of the problem can be carried out in three steps. First, the matrix D is
computed. Although it is possible to fix the number of functions in the basis on each
element beforehand, we allow changes in the number of basis functions per element during
the building of the matrix. Hence, we reduce the severity of the stability problems that were
reported in [3]. When the matrix D is computed, it is Cholesky factorized for later use in
solving the matrix equation (26).

In the second step, after the number of functions in the basis on each on each element
is chosen, the matrix C can be computed. In the third step, the matrix system (26) is
solved using an appropriate direct or iterative matrix solver. The last step is the most time
consuming. Therefore, the choice of the solver is an important issue.
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4.1. Invertibility of the Matrix D

The block diagonal structure of the matrix D allows the separate factorization of the
blocks Dk . The conditioning of the matrix block Dk depends on a variety of factors, such
as the element size hk and the number of bases pk in that element. It was shown in [3] that
the condition number of Dk for pk ≥ 4 is bounded from below by Ch−2int(pk/2)+2

k , where
C is a positive constant and int(a) refers to the integer part of a. Numerical simulations
show that the conditioning of the matrix block Dk also depends on the wave number κk ; see
Section 5.1.

Obviously, we can control the condition number of the matrix D by controlling the
element size hk and the number of bases pk . These parameters should be chosen so that
stable inversion for all blocks Dk is possible. Although we could vary the element size
during mesh generation, we focus on controlling the number of based for a fixed mesh.
This approach is justified because in many applications it is desirable to solve the problem
with many wave numbers using the same mesh. On the other hand, we know from the least-
squares method that the easiest way to improve the accuracy is to use more basis functions
rather than a finer mesh, provided the solution to be computed is smooth [10]. Motivated
by those considerations, we also investigate what size elements are allowed in the UWVF
to obtain a tolerable accuracy. The main difficulty in the use of large elements is the need
for a high-dimensional local basis which causes ill-conditioning of the blocks Dk for other
elements if used uniformly regardless of element size.

4.2. Choosing the Basis

The simplest possibility is to use a fixed number of basis functions (i.e., a fixed number of
directions for the plane waves) in all elements. However, due to the variability in the wave
number and element size within the computation domain, this may result in severely ill-
conditioned blocks leading to instability of the solution. In this paper we propose a scheme
in which the number of bases is chosen dynamically during computation of the matrix D.

An appropriate criterion to characterize the stability of the inversion is the L1-condition
number

Cond(Dk) = ‖Dk‖1

∥∥D−1
k

∥∥
1. (28)

The method we use is based on the sequential computation of the blocks Dk and estimation
of the condition number. We start by setting the highest allowed value for the condition
number and fixing the initial number of functions in the basis on each element. Then,
we proceed element by element, building the block and estimating the condition number
for the current basis. Depending on the condition number, we can reduce or increase the
number of functions in the local basis, recompute the block, and reestimate the condition
number. When the appropriate number of functions in the basis for the element is found,
the Cholesky-factorized block is saved and the same procedure is repeated for the next
element. As the outcome, we get the Cholesky-factorized matrix D and the number of basis
functions for each element.

Various criteria can be used to choose the admissible number of bases. For example,
one can choose the highest dimensional basis for which the condition number is below
a predetermined limit. Alternatively, an initial guess can be a relatively high dimensional
uniform basis which is known to generate ill-conditioned blocks. The dimension can be
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reduced only for the elements with the worst conditioning. Computation time is naturally
dependent on the method and the initial guess for the basis. However, the basis is independent
of the boundary data, and therefore for a single frequency and mesh it must be computed
only once.

4.3. Iterative Algorithms

Problem (26) can be solved using a variety of techniques. Due to the large size of the prob-
lem an interative solver is preferred. In [3] the Richardson algorithm was used. Algorithm 1
shows a pseudo code for the method.

ALGORITHM 1.
Set ε > 0
β0 = rand(0.5; 1 − ε)
b̂ = D−1b
X0 = β0b̂
for i = 1, 2, 3, . . .

Xi = βi−1b̂ + [(1 − βi−1)I + βi−1 D−1C]Xi−1

if Xi accurate enough; quit;
βi = rand(0.5; 1 − ε)

end.

By rand(a, b) we denote a uniformly distributed random number between a and b. The
behavior of the method for the UWVF problem is analyzed in detail in [3, 4].

In this paper we compare the Richardson scheme with another iterative solver, namely
the stabilized Bi-Conjugate Gradient (Bi-CGStab) [16]. This variant of the conjugate gra-
dient has been shown to be an efficient and smoothly convergent method for solving high-
dimensional linear systems, see, e.g., [13, 16, 17]. It is applicable to nonHermitian matrices
as encountered here (although the reduction of the residual will not necessarily be mono-
tone). Algorithm 2 describes steps in the Bi-CGStab for the system (26).

ALGORITHM 2.
X0 is an initial guess; r0 = D−1b − (I − D−1C)X0

r̂0 = r0;
ρ0 = α = ω0 = 1;
v0 = p0 = 0;
for i = 1, 2, 3, . . .

ρi = (r̂0, ri−1); β = (ρi/ρi−1)(α/ωi−1);
pi = ri−1 + β(pi−1 − ωi−1vi−1);
vi = (I − D−1C)pi ;
α = ρi/(r̂0, vi );
s = ri−1 − αvi ;
t = (I − D−1C)s;
ωi = (t, s)/(t, t);
Xi = Xi−1 + αpi + ωi s;
ri = s − ωi t ;
if Xi accurate enough; quit;

end.
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From the computational point of view it must be noted that the Bi-CGStab requires two
multiplications by I − D−1C and four vector inner products on each iteration. Only one
corresponding matrix–vector multiplication is needed in the Richardson algorithm.

5. NUMERICAL EXAMPLES

As an example of the inhomogeneous Helmholtz problem we consider acoustic scattering
from the obstacle �1 with different properties than those in the surrounding medium �2. The
concentric circular domains �1 and �2 have radii a = 5.0 cm and R = 10 cm, respectively
(Fig. 2). The aim is to assess the behavior of the error of the UWVF approximation rather
than to emulate any particular physical problem. The simple geometry allows us to compute
an accurate approximation for the problem (1) and (2) using truncated Fourier series.

The acoustic pressure in �1 ∪ �2 is now denoted by u. Let the speed of sounds be
c1 = 3000 m/s and c2 = 1500 m/s in �1 and in �2, respectively. The corresponding densities
are ρ1 = 2000 kg/m3 and ρ2 = 1000 kg/m3. The wave numbers are now κ1 = 2π f/c1 and
κ2 = 2π f/c2, where f is the frequency of the sound field. The values for the physical
parameters c and ρ are typical for biological tissues.

On the exterior boundary � we have

1

ρ2

∂u2

∂ν
− iκ2u2 = 1

ρ2

∂uin

∂ν
− iκ2uin, (29)

where uin is the incident wave. The boundary condition (29) is obtained from the general
form (2) by choosing Q = 0, σ = κ2, and

g = 1

ρ2

∂uin

∂ν
− iκ2uin on �. (30)

As the incident field we use a point source

uin = i

4
H (1)

0 (κ2|x − x0|) (31)

located at x0 which is 1.0 cm outside the exterior boundary. H (1)
0 is the zero-order Hankel

function of the first kind. In many physical problems the sound source can be constructed
from a combination of point sources.

The boundary condition (29) is the lowest order absorbing boundary condition for the
scattered part of the pressure field u. Although there are more accurate absorbing boundary

FIG. 2. The geometry of the model problem.
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FIG. 3. One of the meshes used in the computations, consisting of 334 elements and 184 vertices.

conditions, this one is chosen because we can derive the exact solution for the problem
which enables comparison with numerical results. Our error analysis compares the UWVF
approximation to the exact series solution of (1)–(2) with the above choice of data.

To increase accuracy of the solution we allow curved boundaries on the boundaries
�1 ∩ �2 and �. The integrals (23)–(25) on those boundaries were computed with the 21-
point Gauss–Legendre quadrature.

We used three meshes with hmax = 2.13 cm, hmax = 1.21 cm, and hmax = 0.68 cm, where
hmax is the maximum length of the element edges in the mesh. The coarsest mesh is shown
in Fig. 3. We consider ultrasound frequencies spanning 100 to 500 kHz. Then, wavelengths
λ = 2π/κ vary between 0.6 and 3.0 cm in the domain �1 and between 0.3 and 1.5 cm in
the domain �2.

5.1. Results for a Fixed Mesh

We start our study of the behavior of the error, the condition number, and the performance
of the iterative solvers using the coarsest mesh with hmax = 2.13 cm. Due to the mesh density
requirements, this mesh is useful for the standard finite elements with frequencies up to
7 kHz in the model problem (assuming that 10 grid points per wavelength are needed). We
show that the UWVF is capable of generating useful results even when the frequency is
450 kHz, which corresponds to about six wavelengths per element. However, high wave
numbers require the use of the nonuniform basis. We start by comparing the accuracy and
conditioning of the UWVF with the uniform and nonuniform bases.

The analytical solution and two UWVF approximations of the problem for the frequency
f = 250 kHz are shown in Fig. 4. The UWVF approximations are computed in the mesh of
Fig. 3.

The effect of variability of the element size and the wave number on the conditioning
of the matrix blocks Dk is shown in Fig. 5. The uniform basis leads to severe conditioning
problems in the domain �1 where the wave number is low. The highest values are in the
smallest elements. However, for the nonuniform number of functions in the basis we can
keep the condition numbers low and still reach the same accuracy with an almost equal
number of degrees of freedom. The condition number of the blocks Dk in this example is
limited to 104. Table I compares the accuracy and the condition numbers for the problem
with uniform and nonuniform bases.
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TABLE I

The Comparison of Uniform and Nonuniform Bases for f = 250 kHz

Number of bases Relative error Max(Cond(Dk )) Number of degrees of freedom

Uniform basis 21 0.1349 5.3 · 1011 7014
Nonuniform basis 11 . . . 29 0.1260 1.0 · 104 6956

FIG. 4. Top: The analytical solution of the problem with f = 250 kHz. Middle: The UWVF approximation
using the uniform basis with pk = 21. Bottom: The UWVF approximation using the nonuniform basis with
pk = 11, . . . , 29. The real parts are shown on the left and on the right are the imaginary parts. The UWVF
approximations are computed in the mesh with hmax = 2.13 cm.
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FIG. 5. Top: Color of an element represents the base 10 logarithm of the condition number of the matrix block
Dk corresponding to the case of the uniform basis with p = 21 and f = 250 kHz. The condition number can be
seen to be high in the domain of the lower wave number and especially in the small elements. To improve stability
of the problem, the condition numbers of the blocks Dk are limited below 104. Bottom left: Base 10 logarithms of
the condition numbers are shown for the nonuniform basis. Bottom right: The highest number of bases for each
element �k for which the condition number of Dk is below 104. The condition numbers for the elements are now
between 103 and 104 while the number of basis functions per element varies from 11 to 29.

In this paper we have used the largest number of basis functions per element that give a
condition number below the predetermined limit. The initial guess was the uniform basis
with five plane waves. Although the blocks Dk had to be computed several times, due to
faster convergence of the iterative algorithms, the total computation time did not increase.
In the simulations of Fig. 4 the computation time for the uniform basis was 117 s, while
using the nonuniform basis reduced the time to 89 s. The computations were done using
a Pentium III PC with a 600-MHz processor and 1 GB of RAM. The code is written in
Fortran90.

Naturally, a better choice of the initial basis would significantly reduce the computation
time used to determine the bases.

We end this section by studying the dependence of the condition number of the matrix
block Dk on the wave number κk . Using a fixed mesh and a fixed number of basis functions
we compute the condition number for the frequency span f = 100, . . . , 500 kHz. The
condition numbers for two arbitrarily chosen elements are shown in Fig. 6. The condition
numbers are graphed as a function of the ratio λk/hk , where λk is the wavelength in the
element �k , and hk is the length of the longest edge of the element. The results confirm
that the condition number increases as the wavelength decreases, as noted in previous
simulations.
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FIG. 6. Left: The condition number of the matrix block Dk is shown as a function of the elements per
wavelength for two arbitrarily chosen elements. Right: The results are computed for the colored elements.

5.1.1. The Error and Conditioning of Dk

In this section we investigate the accuracy of the UWVF approximation and the condi-
tioning of the matrix blocks Dk . The relative errors and the largest condition numbers of the
blocks Dk for frequencies f = 100 kHz, f = 250 kHz, and f = 400 kHz are shown in Fig. 7.
The number of grid points per wavelength is measured as the minimum ratio min(λk/hk).
The ratios corresponding to the above frequencies are min(λk/hk) = 0.70, 0.28, and 0.18,
respectively. The results indicate that it is possible to use fairly coarse meshes, i.e., the
element size is several times the wavelength.

Note that in the high-frequency case the choice of a uniform basis results in an unaccept-
able condition number before the error decreases to 49%. However, with the nonuniform

FIG. 7. Top: The figure shows the relative discrete L2 error for three different frequencies against the number
of degrees of freedom. Bottom: Corresponding maximum condition numbers of the blocks Dk . All results are
computed in the same mesh with hmax = 2.13 cm.
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basis we are able to obtain 1.4% error for the highest frequency f = 400 kHz. On the other
hand, with the lower frequencies the nonuniform basis approach provided a means for pre-
conditioning the resulting matrix system. This topic is discussed in the following section
together with iterative solvers.

5.1.2. Preconditioning and Performance of the Iterative Solvers

We have shown that an appropriate choice of basis can improve the stability of the
inversion of the blocks Dk . To determine stability of the matrix equation (26) one needs
to study conditioning of the operator I − D−1C . We present the L1-condition numbers for
various operators for the frequency f = 100 kHz in Fig. 8. The plots correspond to the
f = 100 kHz simulations in Fig. 7.

The results suggest that the maximum condition number of Dk characterizes the con-
ditioning of the operator I − D−1C . Also, note the superiority of the form I − D−1C
compared to the nonpreconditioned equation D − C .

The convergence of the iterative solvers is studied by observing the norms

Residual = ‖D−1b − (I − D−1C)X‖2

‖D−1b‖2
; (32)

Change in Xi = ‖Xi − Xi−1‖2

‖Xi‖2
. (33)

The residual is computed in the Bi-CGStab as ‖ri‖2/‖D−1b‖2. The iterations are terminated
when the residuals get below 10−6.

FIG. 8. Top: The figure shows conditioning of the UWVF matrices in the case of a uniform basis (solid
lines) and of a nonuniform basis (dashed line) plotted against the number of degrees of freedom for f = 100 kHz
and hmax = 2.13 cm. Bottom: In the figure are the number of matrix–vector multiplications required to reach the
termination criterion.
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FIG. 9. Convergence of the iterative solvers for f = 100 kHz and hmax = 2.13 cm. The norms for the Bi-
CGStab are in the left column and for the Richardson in the right column. We present the residuals for the uniform
basis with p = 11 (a)–(b) and p = 15 (c)–(d). Convergence with the nonuniform basis is shown when the condition
number of Dk is limited to 106 (e)–(f) and 1012 (g)–(h).
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The iterative solvers are compared by counting the matrix–vector multiplications y =
(I − D−1C)x = x − D−1Cx needed to achieve the termination criterion. We remember
that in addition to the matrix–vector operations four vector dot products are needed in the
Bi-CGStab. However, the computational effort required for that is only a fraction of that
needed for the matrix–vector operation.

The Bi-CGStab converges faster than the Richardson algorithm; see Fig. 8. The Bi-
CGStab also reached the stopping criterion in all cases, whereas the Richardson stagnated
in the case of the largest dimensional uniform basis.

The residuals as a function of iteration number for some simulations are presented in
Fig. 9. In the same problem the Richardson algorithm failed to reach the termination
criterion. Table II summarizes the simulations of Fig. 9. In all examples the convergence of
the Richardson algorithm was smoother than that of the Bi-CGStab.

Finally, we show the relative error and variation in the number of bases as a function of
the number of grid points per wavelength in Fig. 10. The results suggest that it is possible
to obtain fairly accurate results on very coarse meshes. We get results with an error of
9% although we have over six wavelengths per element (at frequencies up to 450 kHz in
the test problem). For higher frequencies ill-conditioning spoiled the results even though a
nonuniform basis was used. We point out that the number of degrees of freedom needed to
reach about 1% error for 450 kHz is only 13,200. That is orders of magnitude lower than
that required in the piecewise linear finite element approach for the same problem with
corresponding accuracy.

FIG. 10. Top: The relative error shown as a function of the elements per wavelength. We used different criteria
for choosing the basis, i.e., the maximum condition numbers of the matrix blocks Dk were limited below 104, 106,
and 108. We have used the highest number of bases that gives the condition number below the limits. Bottom: The
figure shows corresponding maximum and minimum numbers of bases in each simulation. The largest variation
in bases occurs when the element size is large compared to the wavelength. The results are computed in the mesh
with hmax = 2.13 cm and the frequency spanning 100 to 500 kHz.
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TABLE II

A Summary of the Simulations of Fig. 9

Uniform basis Nonuniform basis

Number of bases 11 15 9 . . . 19 15 . . . 27
Number of degrees of freedom 3674 5010 4859 7128
Max(Cond(Dk )) 7.7 · 106 2.3 · 1011 9.9 · 105 9.9 · 1011

Cond(D − C) 9.7 · 107 9.3 · 1012 2.4 · 107 2.2 · 1015

Cond(I − D−1C) 2.9 · 105 9.9 · 108 2.5 · 105 1.8 · 1012

Matrix–Vector multiplications, Bi-CGStab 388 588 362 706
Matrix–Vector multiplications, Richardson 604 Stagnation 565 1939
Relative error 4.63 · 10−2 2.07 · 10−3 3.13 · 10−3 4.05 · 10−5

FIG. 11. Top: The figure represents the relative error against the number of degrees of freedom for different
meshes for f = 250 kHz. Middle: The maximum condition numbers of Dk corresponding to the errors above.
Bottom: The number of matrix–vector multiplications needed in the stabilized Bi-CG solver to reach the termination
criterion.
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For a fixed mesh the largest variation in the number of basis functions per element occurs
for the shortest wavelengths. On the other hand, when the wavelegth increases the variation
between elements decreases and it may be reasonable to use a uniform basis.

5.2. The Results under Mesh Refinement

We show the effect of mesh refinement on accuracy, the conditioning of Dk , and the
convergence of iterations in Fig. 11. From the results it is obvious that an improvement in
accuracy can be obtained with less effort by increasing the dimension of the basis rather
than refining the mesh. Although the nonuniform basis did not improve the accuracy for the
finer meshes an advantage is obtained in better stability and therefore faster convergence of
the iterative solver.

We present the number of the matrix–vector operations for the Bi-CGStab method only
since more operations were needed with the Richardson method. In addition, the conver-
gence of the Richardson method stagnated in some of the most ill-conditioned cases.

6. CONCLUSIONS

We have shown that the use of nonuniform plane wave bases in the ultra-weak variational
formulation improves its applicability to inhomogeneous Helmholtz problems with varying
element sizes. The method proposed in this paper was based on the preconditioning of
blocks in the resulting matrix equation. This led to variable dimension bases on different
elements.

The results indicate that it is possible to use very large elements compared to the wave-
length; in some simulations up to six wavelengths per elements size. This makes it possible
to solve high-wave-number problems with coarse meshes and with a relatively low compu-
tational effort. We also showed that the benefit from the nonuniform basis approach is most
significant when large elements are used.

In addition, we compared the Richardson and the stabilized Bi-Conjugate Gradient
methods for solving the resulting linear system. The Richardson iteration converged more
smoothly but stagnated in some cases. Fewer matrix–vector multiplications were needed in
the Bi-CGStab to reach the same termination criterion. Using a nonuniform basis improved
the convergence of both methods.

In this paper the number of basis functions was chosen by approximating the condition
number of the blocks in the resulting matrix system. The number of basis functions per
element was changed if the condition number was far from the predetermined value. This
approach required the matrix blocks to be computed several times. A useful improvement
would be a method to estimate the condition number for the blocks as a function of the
number of bases based on the material parameters and the geometry of the elements.
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